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Summary 

In the past three years, we focused on self-evaluative methods for agents that interact 
with other agents and dynamic environments. We started with the observation that it 
would be beneficial for agents to sense prevailing qualities that stem from their 
interactions such as situation awareness, sociability, coordination, autonomy, failure 
tolerance, timeliness, and purposefulness. Agents usually have access to constraining 
requirements over these qualities. Additionally, many of these qualities are conflicting 
but a balance is desirable for a given domain and agents can discover that in operation. 
We have shown that an agent could attempt adjustments in its interactions to bring about 
favorable global changes. Such abilities require agents to have capabilities at the 
architectural level. Theoretical results include various models of relationships among 
social notions, and several models of autonomy, trust, and Power. Simulation results 
include two implemented multiagent systems as testbeds. Over 60 published reports listed 
at the end of this report present our theoretical developments and reports of experiments 
from simulations. In the next two sections we briefly outline theoretical developments 
and implemented simulations. 

Theoretical Work 

We have developed two agent architectures that empower the agent with self-evaluating 
methods. The first architecture is VONBDI that extends the BDI paradigm with values, 
norms, and obligations. The second architecture explores how agents can use coherence 
to organize their memory and to evaluate their interactions with other agents. We looked 
at issues of group dynamics. Specifically, we developed a model of agent teams that 
gives prominence to autonomy, cooperation, and responsibility. Relative and absolute 
senses of autonomy are explored and shown useful in various implementations. 

Simulations 

Two applications domains are implemented in simulation. One is teaming among low- 
orbit satellites, which started in 2000 and continued at UND. This software package we 
implemented allowed the simulation of intelligent autonomous agents. The software uses 
the paradigm of satellites in orbit communicating with one or more ground stations or 
each other. Each satellite and each ground station is considered to be an individual 
intelligent autonomous agent. The software can restrict communication to agents that are 
in site of each other or can allow commimication regardless of relative positions. All 
agent communication is done via network sockets. The simulation was successfiilly used 
to show that an agent's autonomy considerations affect its interaction in a team. We 
showed that teaming is superior to scheduling task for low-orbit satellites. Work at UND 
started in summer of 2000 with the low-orbit satellite simulator. We modified the 
simulation software to use a metric to predict when a ground station is approaching 
saturation and to spawn an additional ground stations. The most realistic approach was to 
spawn another third agent (a new type of agent for our simulation) to act as a facilitator to 
"load balance" the ground stations. The modifications allowed the removal of a ground 



station(s) and possible the facilitator should the overall workload drop to a level below 
what our metric indicates as a saturation point. We modified our simulation to behave in 
a non-deterministic manor. An issue left to be determined is when we "spawn" additional 
agents to act as ground stations or facilitators do we create additional agents or do we 
convert existing agents (satellites) into ground stations and facilitators. In our particular 
paradigm, converting existing agents was not realistic. However, in the more general 
paradigm (i.e. a paradigm of autonomous aircraft flying towards a target point) 
converting existing agents would be very realistic. Finally, since the latest work 
performed as UND has not yet been published we have included the manuscript for the 
work (appendix 1) that will be submitted for publication in the near future. 

The second simulation entirely designed and implemented at UA was to mediate 
interactions among a number of UCAVs flying over a terrain with SAM sites. In our 
implemented testbed three or more fighter aircraft agents have the mission to deliver a 
bomb over a remote designated site. There is a one to one relationship between agents 
and planes. Artificial agents control all the planes except one, which is controlled by a 
human operator. The human operator controls its plane in the field along with the other 
planes, and will have similar visual and auditory sensing as well as similar flight 
maneuvering capabilities. The system is implemented in Java. We used this simulator for 
empirical investigation of roles and social influences. Our preliminary results 
demonstrate that responding to team members in need of help improves the team's 
overall effectiveness. This extends our earlier treatment of teams and measurement of 
team effectiveness along the dimensions of cohesion. We examined methods of capturing 
the relationships between social actions and resulting influences. We simulated 
autonomous versus human controlled UCAV. The results are the following: 

• By adjusting trust levels among agents in similar situations, the human supervisor 
is relieved. 

• Adjusting autonomy among agents, changes their performance. 
• Agents performance drops when it has to wait longer for human decision. 
• Agents use past experience of waiting for human decisions and compose a 

reliance factor. Using this notion, they adjust their waiting cycle for human 
decisions. 
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Appendix 1 

Abstract 

This report describes a multi-agent system where independent software agents interact 
with each other through a broker to achieve a common goal. Our system consists of 
satellites (considered to be agent) which send information (military, geographical etc) to 
ground station(s) (considered to be another type of agent) wherein the received 
information will be processed. However if we have 'n' number of satellites which send 
information simultaneously it is difficult for the ground station to receive all the 
information at the same time, thereby leading to overloading of the system. An intelligent 
system that would create additional ground stations when required thus maintaining 
optimal performance of the system is desired. The research work presented here 
addresses the above-mentioned issue. 

The goal of the research was to design an environment that would allow the system to 
make intelligent decisions to improve system performance. Using the concept of network 
queuing and allowing the system to add or redirect existing agents (with the help of a 
broker), we have designed an environment that can optimize system performance and 
resource allocation. Two software simulations of the multi-agent system were used to 
observe the effectiveness of the solution. The results of simulation are presented in this 
report. 

1.   Introduction 

Earth observing satellites also known as remote sensing satellites carry instruments that 
take remote measurements from space that show what is happening on the earth. One of 
the main objectives of Earth observing satellites is to obtain images of specified areas on 
the Earth's surface and then send it back to the ground stations. The images can be used 
in several environmental, military and geographical applications. While the satellite 
continuously sends messages, the ground station only receives them when the satellite 
and ground station are in a direct line of sight of each other. An assumption has been 
made that the environment is very dynamic and that the orbit and number of satellites are 
not fixed, neither is the location nor the number of ground stations. Any ground station is 
capable of receiving data from any satellite as long as they are in line of sight with each 
other. There are times when no satellite is in line of sight and the ground station is idle 
and times when several satellites are simultaneously in line of sight and the ground 
station is saturated with messages and is not capable of processing them in a timely 
manner. This is when one needs a broker in the system which will optimize the message 
processing by creating additional ground stations which eases the load on the system and 
removing the added ground stations when no longer needed by conserving the available 
hardware resources. 

The efficiency of the system has been a primary concern in the design of the systems, 
which deal with efficient allocation of resources. M. Lemaitre et. al. [1] worked on the 
problem of finding equitable and efficient allocations of resources resulting from the co- 



exploitation of an Earth Observation Satellite by several agents. Taking a centralized 
perspective, in which decisions are made by an impartial arbitrator, a simple and general 
modelization of the problem has been set, based on two levels of utility functions: the 
individual utilities of agents, and the collective utility. Four different procedures for 
selecting the best allocations have been proposed. The first procedure, allocating satellite 
revolutions to each agent in turn, is quite perfectly equitable but lacks efficiency. The 
second one amount to a classical utilitarist perspective: the collective utility function is a 
linear combination of normahzed individual utilities, but the coefficients are chosen in a 
way to favor equity. The third proposed approach is a genuine bi-criteria approach, 
allowing comparing allocation over two criteria: efficiency and equity. Finally, an 
egalitarist approach is used, in which a unique collective utility function is used to 
characterize equitable and efficient allocations. Above four mentioned procedures as 
been used by M.Lemaitre et. al. [1], to show the allocation of resowces among the 
different agents must be equitable. But it must also be efficient, that is, the available 
resources must not be under-exploited. Since our research deals with the real time 
simulation of Earth Observing Satellites and moreover we are dealing with the efficient 
allocation of resources, we are making our system efficient by introducing a broker, 
which takes decisions with the variation of load to maintain the system performance. 

Load balancing is done in our system based on slope, which is calculated from queue 
size and the time; the broker varies the number of active ground stations receiving 
messages. This load balancing activity has been studied intensively by many researchers 
in past. Yun Sik Kim et. al. [2] introduced one of the unique traffic features of LEO 
satellite networks, non-uniform traffic load distribution, and proposed the traffic load 
balancing scheme to resolve this problem, they uses a near-neighbor residual bandwidth 
information to apportion excess load fi-om heavily loaded satellites to their under loaded 
neighbors in the network. Sasa Desic et. al. [3] studied a simulation of a distributed 
system with capability of load balancing by using the artificial load. They also compared 
the system's performance using several stationary load balancing methods and the system 
performance without load balancing methods; he showed that several agent based load 
balancing solutions have shown significant improvement in system performance in 
comparison with the system without load balancing method. Adrian Vasilache et. al. [4] 
developed a simulator for a multiple home agent's architecture in a Mobile IP network. 
They used a discrete event based simulator it subsequently relies on event analysis and 
interpretation. The events are processed within the Event Dispatcher, and infinite loop 
that fetches events from a dedicated queue and triggers the appropriate routine. Each 
event has a time stamp that allows the placement in the queue according to its occurrence. 
They also comparatively studied the behavior of several load balancing policies and 
introduced a more realistic customized double threshold load balancing policy. 

2.   Background 

An Agent is a computational system that inhabits dynamic unpredictable environments. It 
has sensors to gather data about the environment and can interpret this data to reflect 
events in the environment. Furthermore, it can execute commands that produce effects in 
the environment. Multi agent systems are computational systems in which several 



autonomous agents interact and work together to perform tasks or satisfy goals. Many 
researchers are building agents that can work in complex dynamic multi agent domains 
[5, 6]. Such domains include virtual theater [7], realistic virtual training environments [8, 
9, 10, and 6] RoboCup robotic and virtual soccer [11 and 12], and semantic web [13], 
among others. 

Coordinating the actions of the agents is very important because an agent that considers 
the activities of other agents when forming its own plan is usually better able to choose 
actions that lead to outcomes that it favors. On the other hand, it is obviously not a good 
strategy for the agents of a cooperative multiagent team simply to ignore each other, 
because the intended effects of one agent's action may already have been achieved by the 
actions of other agents, it is also not a good strategy for each agent to keep track of all the 
activities of other agents, because the effort required might prevent the agent from doing 
useful work itself. 

Sen et al. [14] studied the effect of limited local knowledge on group behavior for the 
resource utilization problem where a number of agents are distributed between several 
identical resources. They concluded that an agent may benefit more from limited 
knowledge of the environment rather than complete global knowledge. Hogg et al. [15 
and 16] analyzed a similar problem and studied the effects of local decisions on group 
behavior. 

Agent request broker is the agent communication mechanism for exchanging knowledge 
and permitting inter-agent negotiation. Cooperation is the fundamental characteristic of 
multi-agent system where the overall system exhibits significantly greater functionality 
than the individual components [17]. In other words cooperation underlines the structure 
of multi-agent systems [18]. In most literatures cooperation is regarded as the common 
sense behavior. Few definitions of co-operation have been presented below: 

• Definition 1[19]: one agent adopts the goal of another agent. Its hypothesis is that 
two agents have been designed in advance, and there is no conflict goal between 
them, furthermore one agent only adopts another agent's aim passively. 

• Definition 2 [20]: one autonomous agent accepts another autonomous agent's 
goal. Its hypothesis is that only cooperation only occurs between the agents, 
which have the ability of rejecting or accepting the cooperation. 

3.   Problem Description 

As stated, a satellite transfers messages to the ground station only if both are in line of 
sight and since the orbit and number of satellites are not fixed, there is a lot of variation 
in the load on the system. There are times when there are many satellites in sight of the 
ground stations and it is overloaded. There are times when no satellites in sight of the 
ground stations and are idle. Therefore, at times one needs more ground stations and at 
times very few depending on the load. Yet ground stations are not capable of making any 
decisions regarding the load variations. By incorporating a broker in the system we can 



provide the system with the necessary decision making capability. We will make broker 
intelligent enough so that it can change number of ground stations by adding a new 
ground station to take overload or by killing a ground station when it is no more required 
to take the load. This results in increase of performance of the system by optimal use of 
the available resources. 

4.   Real Time Simulation 

4.1 System Overview 

In this section we will discuss the satellite simulation (SATSIM) environment that we 
designed for evaluating the effectiveness of message transmission and receipt by agents. 
SATSIM was designed to operate as a real-time standalone simulation model and allows 
the user to configure the environment to generate different amounts of data allowing the 
analysis of different possible situations. SATSIM was written in the C++ language and 
uses the SOLID (Interference Detection Library Copyright © 1997, 1998 Gino van den 
Bergen) library for determining when objects are within line of sight. All agent 
interactions are through sockets using the TCP/IP protocol. Once the simulation is 
started, satellites continuously send messages to ground stations; however, ground 
stations can only receive the messages if they are in line-of-sight. Figure 1 shows the 
environment with one ground station and two satellites. The red line indicates which 
agents are insights of each other. As shown in Figure 2 SATSIM has two primary 
components, an agent and a broker. The broker creates sockets and waits for connections 
from the agents to estabUsh a communication pattern. Agents are either satellites or 
ground stations. Ground station parameters include the name of the machine hosting the 
broker to connect to, the latitude and longitude of the ground station, and a unique ID. 
Satellite parameters include the name of the machine hosting the broker to connect to, the 
initial latitude and longitude, the altitude, and a unique ID. 



Figure 1: Real Time Simulation Environment. 
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Figure 2: Physical Model Of system 

The major problem with a real-time simulation, such as this one, is the non-independence 
of the agents. Agent independence was obtained by placing the different components on 
different machines. This, however, resulted in the loss of messages not only due to 
collisions on the network, but more importantly due to the simultaneous arrival of 
messages at the broker. We drastically reduce this symptom by applying simple queuing 
theory of storing all satellite messages received by the broker in a FIFO queue. The 
messages are then passed on to a ground station for processing, when this message is 
processed an acknowledgement is sent back to the broker, with the receipt of 
acknowledgement broker removes a message from the queue and sends it to the ground 
agent for farther processing. 

4.2 Real Time Simulation results 

Our first investigation was to study the load variation by varying the number of satellites 
and allowing only one ground station in the system. The purpose of this simulation is to 
study the system capacity that our current system can handle efficiently without the 
message loss. As the number of satellites increases, the rate at which the messages are 
sent from these satellites will also increase and since we have only one ground station, 
the number of unprocessed messages in queue is also expected to increase results in 
increased load. 

Load balancing was implemented in the following manner; broker receives messages 
from the satellite(s) and stores in a queue. For every seven messages received the broker 
calculates the slope and if the slope is greater than 1.22 a new ground station is created 
for processing messages other wise a ground station is deleted. Then broker sends a 
message to ground station(s) for processing from the queue. The ground station(s) then 



processes the message and sends the acknowledgement to the broker which in turn sends 
the next message from the queue, this process continues until the queue is empty. 
The results shown below demonstrate that as the number of satellites increases from 1 to 
6, number of unprocessed messages in queue also increases. But as the number of 
satellite increases over 6 (as in the case with 8 satellites), number of unprocessed 
messages decreases instead of increasing. This suggests that there has been loss of 
messages because of hardware limitations. Hence in our simulation we considered only 
up to six satellites. The following Figures 4.1, 4.2, 4.3, 4.4 and 4.5 show the variation of 
queue size over time for different number of satellites. 
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Figure 4.1: One satellite and one ground station. 
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Figure 4.2: Two satellite and one ground station. 
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Figure 4.3: Four satellites and one ground station. 
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Figure 4.5: Eight satellites and one ground station. 

Our second investigation was to make the broker intelligent and allow it to make 
decisions regarding load balancing. As the number of satellites increases, the size of the 
unprocessed messages in the queue also increases, since we have only one ground station 
running at any time, the increase in the queue size cannot be satisfied by one ground 
station, hence we have to add new ground stations whenever it is necessary to satisfy the 
increased message traffic, and kill the added stations whenever it is no longer need, to 
conserve the system resources. We have arbitrarily set the maximum queue size to 28 



messages. For any instance of simulation if queue size exceeds 28 messages our 
simulation is assumed to have failed. 

This adding and killing the ground stations is determined by the slope calculated from the 
queue size and the time. Based on the simulation results we found that the critical slope is 
1.22. Using slope value less than 1.22 the system doesn't fail but doesn't work at the 
optimal performance level either. However, using a slope value greater than 1.22 results 
in the queue size exceeding 28 messages which results in system failure. The slope is 
calculated after the arrival of seventh message; this number was determined 
experimentally. If we calculate slope after the arrival of more than seven messages the 
system fails (queue size exceeds 28), this is because broker couldn't add the required 
number of groimd stations in a timely manner to avoid the failure. Broker adds the 
ground station if the slope is above 1.22 and kill the added ground station if the slope is 
.below 1.22. 

The results shown in Figures 4.6, 4.7, 4.8 and 4.9 demonstrate the affect of adding 
ground stations when necessary and kilUng them when they are no longer needed. 
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Figure 4.6: For one satellite and multiple ground stations. 
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Figure 4.7: For two satellites and multiple ground stations. 
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Figure 4.8: For four satellites and multiple ground stations. 
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Figure 4.9 For six satellites and multiple ground stations. 

The hardware support for this simulation environment was provided by three systems 
with Red Hat Linux version 7.2 were cormected with an 8 port 10/100 fast ethemet hub 
on a 10 mbps network. Two of the three systems, representing satellite and broker, had 
the same configuration of Celeron 1686 366MHz and the third one was Pentium 1586 
166MHz ex.ecuting a ground station. 

5.   Software Simulation 

5.1 System Overview 

This simulation is run on a single processor machine, and is concentrated as a single 
process running at any instance. In this scenario, we simulate the agent side behavioral 
pattern as to when another agent should be created and when deleted. The messages from 
the broker are sent to the agent and we simulate the same as the agent receiving the 
messages from the broker and each message received is added to its queue that collects 
all the messages to be processed and the messages in queue are deleted once there are 
processed. Initially the messages coming from the broker are greater in number than the 
outgoing messages from the queue, and this results in a drastic increase in queue size. 
This observation helps us to decide the necessity of creating another agent to balance the 
load using the slope as heuristic. When another agent is created, the messages are 
processed at higher rate thus decreasing the queue size. Finally there comes a stage when 



the queue size is such that one agent can handle the traffic, this the time when decision is 
taken that other agents should be deleted. A multiple test runs have been made to define 
the heuristic for agent creation and deletion. The results of the simulation are graphed for 
better study and understanding. The results are taken by account of one agent spawning 
just one agent all the through the process and the same agent spawning multiple number 
of agents depending on the necessity in another process. 

The results are formulated based on the implementation that when the messages are 
created, they will be stored in a queue and for every seven messages created, a slope is 
calculated and if the slope is greater than 1.22 the delay time for processing messages is 
reduced other wise increased. The messages are deleted from the queue based on the 
delay time. This process continues until the queue is empty. 

The message generation in this simulation environment is a poisson distribution with 
varying lambda values between 1 and 6, the same is represented in Figure 5.1, to 
resemble the message receiving pattern at the broker side of the real time simulation 
environment. The time for calculating the slope is also duplicated to resemble the real 
time simulation environment. This simulation was run on an Athlon AMD dual processor 
system for approximately 2 minutes. 
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Figure 5.1: Comparison of message generations. 

5.2 Software Simulation Results 

The results for the software simulation for single ground station are shown in Figure 5.2. 
Figure 5.3 demonstrates the same when multiple ground stations are operational. 



Queue Size Vs Time 

Figure 5.2: For single ground station. 

6.   Conclusions 

Introducing an intelligent broker in the system made the system efficient enough by 
making decisions in timely manner by better utilizing the available resources. The 
simulations presented in this paper show the best-performance of the system; based on 
the real time simulation results we found that the critical slope of the queue size versus 
time is 1.22 and this was supported by the demonstration of software simulation. Broker 
adds a ground station if this slope is more than 1.22 to satisfy the increased load on the 
system and kills non-required ground station if the slope is less than 1.22 to make the 
optimum use of the available resources. These experiments justify the implementation of 
decision making broker in our system for increase in performance. 
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Figure 5.3: For multiple ground stations. 
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